Research Statement

Geoffrey D. Dietz

1. INTRODUCTION

My research interests reside in commutative algebra, specifically tight closure theory and the existence of
big Cohen-Macaulay modules and algebras. Much of my research has focused on rings containing a field of
positive prime characteristic.

The theory of commutative rings, developed over the last century, serves as a fundamental tool for
modern mathematicians studying algebraic geometry and algebraic number theory. Commutative rings,
especially those containing a field, provide the “local data” used by algebraic geometers to construct and
study algebraic varieties (algebraic analogues of complex manifolds from differential geometry). As a result,
commutative algebra lies at the very heart of modern algebraic geometry. For many algebraic number
theorists, commutative algebra is also an indispensable tool, as many problems revolve around the study of
commutative rings containing the integers. In the last several decades, commutative algebra, via the study
of Cohen-Macaulay rings and homological algebra, has also provided new and significant results in algebraic
combinatorics.

Beyond applications to other branches of mathematics, commutative algebra also stands on its own as
a very deep and beautiful field of study that possesses many interesting unsolved problems. A number of
significant open questions in commutative algebra have been collectively labeled as the “local homological
conjectures.” Many of these conjectures are actually theorems for rings containing a field and have been
proved by numerous people over the last couple of decades. Most of the conjectures are interconnected, and
the truth of many of them follows from a weakly functorial existence of big Cohen-Macaulay algebras.

For a local Noetherian ring R, an R-module M is called a (balanced) big Cohen-Macaulay (C-M) module
if every system of parameters (s.o.p.) for R is a regular sequence on M. If M = S is an R-algebra, then we
call S a (balanced) big C-M algebra for R. If R has Krull dimension d, a set of elements 1, ..., x4 is called
a system of parameters if the dimension of R/(z1,...,24) is zero. Given an R-module M (not necessarily
finitely generated) and elements yi,...,y, in R, one calls y1,...,y, a reqular sequence on M if y; is not a
zerodivisor on M, y;41 is not a zerodivisor on M/(y1,...,y;)M, for all i > 1, and M/(y1,...,yn)M # 0.

Following the terminology of M. Hochster and C. Huneke in [HH4], a category of rings enjoys a weakly
functorial existence of big C-M algebras, if a given map of rings R — S in the category can be extended to
a commutative diagram

T
S

where B is a big C-M algebra for R and C is a big C-M algebra for S. In [HH4], Hochster and Huneke
showed that such a weakly functorial existence of big C-M algebras occurs for rings containing a field. The
core of their proof is their remarkable theorem (see [HH2]) that R, the integral closure of R in an algebraic
closure of its fraction field, is a big C-M algebra for R when R is an excellent local domain of positive prime
characteristic. If R is N-graded, they also construct a Q-graded domain RTGR inside RT and show that
every homogeneous system of parameters is a regular sequence on RTGE,

A closely related topic is the theory of tight closure developed by Hochster and Huneke. Given a domain
R containing a field of positive characteristic p and an ideal I, the tight closure of I in R is

It :={ue R|3c#0st. cu? e IP] forall e > 0},

_

_

&N —W

where IP°] is the ideal

(a’" |a € I)R.
For a detailed introduction to tight closure, including the definition of the tight closure NNy, for finitely
generated R-modules N C M and for rings that are not domains, see [HH].

Like the existence of big C-M algebras, tight closure theory can give (often surprisingly simple) proofs of
results that lead to positive solutions of many of the homological conjectures when the ring contains a field.
There are still many open questions surrounding tight closure theory and big C-M modules and algebras,
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even in positive prime characteristic. My research has concentrated on studying some of the open problems
related to these two areas.

2. SEEDS AND BiG COHEN-MACAULAY ALGEBRAS

I have been studying algebras that map to a big C-M R-algebra over a local ring (R, m). I call these seed
algebras over R. See [D1] or [D3].

One of the most important results about seeds that I have proved is that an integral extension of a seed
is still a seed over a local ring of positive characteristic. This result can be used to imply the existence of big
C-M algebras over complete local domains of positive characteristic and can be viewed as a generalization
of previously known existence results for big C-M algebras. I have also been able to show that all seeds can
be mapped to an absolutely integrally closed, m-adically separated, quasilocal big C-M algebra domain.

In developing the properties of seeds I have also been able to prove some new results about big C-M
algebras over a complete local domain R of positive characteristic. Specifically, if B and B’ are big C-M
R-algebras, then B and B’ map to a common big C-M R-algebra C,

B——C

|

R——PB

showing that the class of big C-M algebras over R forms a directed system. I have also proved that if R — S
is a local map of positive characteristic complete local domains, and B is a big C-M algebra over R, then
there exists a big C-M algebra C over S giving a commutative diagram:

B——C

|

R——S

This result generalizes the weakly-functorial existence result of Hochster and Huneke for big C-M algebras.
The two results above can then be used to define a closure operation using big C-M algebras over R.
Hochster’s result in [Ho| shows that this operation is equivalent to tight closure for complete local domains,
but my results show directly that the closure operation derived from big C-M algebras has many of the nice
properties of tight closure.

Question 2.1. Are the seed and big C-M algebra results above also true in equal characteristic zero?

Two ways to approach this question would be to use either the descent methods employed by Hochster
and Huneke in their development of characteristic zero tight closure (see [HH6]), or to use the Lefschetz
hull and ultraproduct methods of Aschenbrenner and Schoutens (see [AS]) to transfer positive characteristic
results to equal characteristic zero.

Question 2.2. Can the notion of a seed being extended to R-modules?

Early work has shown we can generalize seeds to include modules that can be mapped to big C-M modules
that possess a Frobenius action. Since big C-M algebras in positive characteristic have such an action via
the Frobenius endomorphism, this notion does generalize our earlier notion of seeds. Although not every big
C-M module in positive characteristic has a Frobenius action, it is interesting to ask the following question
as a positive answer would provide for a very satisfactory notion of seeds for R-modules.

Question 2.3. Can every big C-M module in positive characteristic be mapped to a big C-M module that
has a Frobenius action?
3. AXIOMS FOR A “GOOD” CLOSURE OPERATION

A recent problem I have studied revolves around finding a set of axioms that will yield a closure theory for
ideals and modules that is strong enough to imply the existence of big C-M modules or algebras for complete
local domains without constraint on characteristic.
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For the case of big C-M modules, I have recently developed (see [D4]) a list of seven axioms for a closure
operation on modules that will induce the existence of a balanced big C-M R-module over a complete local
domain R, independent of characteristic:

(1) Nﬁ/l is a submodule of M containing N.

(2) (N]hw)?v[ = N]hw; i.e., the g-closure of N in M is closed in M.

(3) If N C M C W, then Nfj, C M,

(4) Let f : M — W be a homomorphism. Then f(N]hw) C f(N)E,V

(5) If Nj, = N, then 05, = 0.

(6) The ideals m and 0 are fg-closed; i.e., m% =m and 032 = 0.

(7) Let 21,...,2,41 be a partial system of parameters for R, and let J = (x1,...,2). Suppose that there
exists a surjective homomorphism f : M — R/J and v € M such that f(v) = 241 + J. Then

(RU)EVI Nker f C (Jv)?w.
Conversely, given the existence of a big C-M R-module B, the operation given by
N, ={ueM|b@uecIm(B®N — B® M) for all b € B}

produces a closure operation that satisfies the seven axioms. It can be seen that tight closure (in positive
characteristic or equal characteristic zero) also satisfies these axioms. Plus closure satisfies all seven axioms
while Frobenius closure satisfies only the first six. Solid closure is much more mysterious (except in positive
characteristic where it is equal to tight closure).

Such axioms as given above do not necessarily imply that there exists a closure operation for a particular
class of rings. For example, for rings of mixed characteristic, whether there exist big C-M modules or algebras
is an outstanding open question, and no closure operation is known to imply their existence in general. If,
however, these axioms may help one construct such a closure operation.

My next step is to study axioms for big C-M R-algebras.

Question 3.1. What axioms should a closure operation satisfy in order to induce a big C-M algebra over
a complete local domain R?

The results about seeds described above show that having a larger family of big C-M algebras also gives
a “good” closure operation for complete local domains of positive characteristic. Finding axioms for such an
existence of big C-M algebras will also be interesting.

4. SoLID, PHANTOM, AND BIG COHEN-MACAULAY ALGEBRAS

Another topic of interest for me has been the study of solid algebras. These were first defined by Hochster
in [Ho] in his attempts to find an alternate definition of tight closure that would also yield a tight closure
theory that did not depend upon characteristic. Given a domain R, an R-module M is solid if there exists
a nonzero R-linear map M — R. If S = M is an R-algebra, then S is a solid algebra over R. Hochster also
defined an operation called solid closure using this concept. If R is a complete local domain (the definition
is more general but is simplest in this case), then the solid closure of I in R is

II’;' :={u € R|u € IS for some solid algebra S}.

When R contains a field of positive characteristic, Hochster has shown that solid closure is exactly tight
closure (see [Ho]). This result motivates one to study solid algebras to try to gain better insight into tight
closure.

In [HH3], Hochster and Huneke defined the notion of a phantomn extension for finitely generated R-modules
when R contains a field of positive characteristic. For a domain R, a map of R-modules N — M is a phantom
extension if there exists ¢ # 0 such that for all e > 0, there exists a map 7. : F(M) — F¢(NN) such that
Ye o F¢(a) = c(idpe(n)), where F¢ is the e iterated Frobenius functor.

Extending this definition to all R-modules, I have defined an R-algebra S to be phantom over R if the
structure map R — S is a phantom extension. I have shown that if R is a complete local domain, then an
R-algebra is solid if and only if it is phantom if and only if it is a direct limit of finitely generated R-modules
M, with R — M, a phantom extension, where the map is the restriction of the structure map R — S. See
[D1].



Hochster has shown that all R-algebras that map to a big C-M R-algebra are solid over R (see [Hol).
Hochster and Huneke gave an example in [HH5] showing that in equal characteristic, there are solid algebras
that are not seed algebras.

I am still interested in studying phantom extensions, however, as they been useful in developing the
axioms of the previous section and may be useful in developing axioms for big C-M algebras.

5. TicHT CLOSURE AND PLUS CLOSURE

For a very long time, the most outstanding open problem in the theory of tight closure was whether or
not tight closure commutes with localization, that is, if U is a multiplicative set in R and S = U~ 'R, does

IS = (I19)g?
This question has an affirmative answer if it is the case that
I*=IRTNR,

when R is an excellent local domain. (The ideal IRT N R is called the plus closure of 1.) This follows because
R localizes nicely, that is, (RT)p = (Rp)™T, for a prime ideal P of R. Perhaps the best partial answer to
this question comes via the work of K.E. Smith ([Sm]) which shows that if an ideal I is generated by part of
an s.0.p. in an excellent local domain, then I* = IR N R. There is also a similar graded result (see [Sm2])
that equates tight closure and the contracted expansion of an ideal from RTGR.

Later, H. Brenner showed in [Br] and [Br2] that if R is the two-dimensional homogeneous coordinate
ring of an elliptic curve or a two-dimensional N-graded domain of finite type over the algebraic closure of
a finite field (respectively), then I* = IRT N R = IRTSR N R for all homogeneous ideals primary to the
unique homogeneous maximal ideal. Analogous statements for modules can be derived by essentially the
same techniques.

Using a graded generalization of the Briancon-Skoda Theorem, I have been able to show that if R is a
standard graded K-algebra domain of positive characteristic with K algebraically closed such that Ny, =
NZ\'Z = NAZGR for all finitely generated R-modules, where M /N is graded and coprimary to the homogeneous
maximal ideal, then the same is true without requiring that M /N be graded. In particular, when we apply
this result to the work of Brenner, then I* = TRt N R = IRTGR N R for all ideals primary to the unique
homogeneous maximal ideal, whether they are homogeneous or not, where R is the homogeneous coordinate
ring of an elliptic curve or a two-dimensional N-graded domain of finite type over the algebraic closure of a
finite field. See [D1] or [D2].

For a while I had hoped to push this result further and strengthen the evidence that tight closure and plus
closure are equal, but Brenner and Monsky have laid this hope to rest as they have produced an example
where the two closure operations are not equal. (See [BM].)
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